Pré-Publication, Document De Travail Année : 2025

On vanishing diffusivity for the advection equation

Résumé

We study the advection equation along vector fields singular at the initial time. More precisely, we prove that for divergence-free vector fields in $L^1 loc ((0, T ];BV(\T^d;\R^d))\cap L^2((0,T)\times\T^d;\R^d)$, there exists a unique vanishing diffusivity solution. This class includes the vector field constructed by Depauw, for which there are infinitely many distinct bounded solutions to the advection equation.
Fichier principal
Vignette du fichier
vanishing_viscosity.pdf (460 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

ensl-04811722 , version 1 (29-11-2024)

Identifiants

Citer

Giulia Mescolini, Jules Pitcho, Massimo Sorella. On vanishing diffusivity for the advection equation. 2024. ⟨ensl-04811722v1⟩
14 Consultations
7 Téléchargements

Altmetric

Partager

More